On invariant distributions of circle diffeomorphisms and an equidistribution theorem for smooth potentials

Andrés Navas

Univ. de Santiago de Chile

Bedlewo, June 2013
This is essentially a joint work with Michele Triestino (ENS-Lyon):

Remarks and related results by/with S. Crovisier and V. Kleptsyn will also be discussed.
Invariant distributions

• A probability measure is a point in the dual of the space of continuous functions. (Duality is realized by integration.)

• Given a manifold M, a k-distribution on M is a point in the dual space of $C^k(M)$.

• A k-distribution L is invariant under a $C^{k'}$ diffeomorphism $f : M \rightarrow M$, with $k' \geq k$, if for all $\varphi \in C^k(M)$:

$$L(\varphi) = L(\varphi \circ f).$$
An example

Assume that $x_0 \in M$ (1-dimensional) is such that

$$\sum_{n \in \mathbb{Z}} Df^n(x_0) < \infty.$$

Then

$$\varphi \mapsto \sum_{n \in \mathbb{Z}} D\varphi(f^n(x_0)) \cdot Df^n(x_0)$$

defines an invariant 1-distribution.
An example

Assume that $x_0 \in M$ (1-dimensional) is such that

$$\sum_{n \in \mathbb{Z}} Df^n(x_0) < \infty.$$

Then

$$\varphi \mapsto \sum_{n \in \mathbb{Z}} D\varphi(f^n(x_0)) \cdot Df^n(x_0)$$

defines an invariant 1-distribution.

This situation arises for hyperbolic-like dynamics. Hence, it is natural to first deal with elliptic-like dynamics...
A theorem by A. Avila and A. Kocsard

Theorem
If f is a C^∞ circle diffeomorphism with irrational rotation number, then f admits no invariant distribution other than (multiples of) the (unique) invariant measure.
A theorem by A. Avila and A. Kocsard

Theorem

If f is a $C\infty$ circle diffeomorphism with irrational rotation number, then f admits no invariant distribution other than (multiples of) the (unique) invariant measure.

In dual form:

Theorem

For every C^k function $\varphi : S^1 \to S^1$ having zero mean with respect to the f-invariant measure, there exists a sequence of C^k functions $\psi_n : S^1 \to S^1$ such that

$$\psi_n \circ f - \psi_n \longrightarrow \varphi$$

in the C^k topology.
Main Results

Theorem
If f is a C^{1+bv} circle diffeomorphism of irrational rotation number, then f carries no invariant 1-distribution other than the invariant measure.
Main Results

Theorem
If f is a C^{1+bv} circle diffeomorphism of irrational rotation number, then f carries no invariant 1-distribution other than the invariant measure.

Theorem
The theorem above is sharp in what concerns regularity of f. More precisely, there are C^1 “counterexamples” f that:
- preserve an invariant Cantor set (Denjoy,...); these can be made $C^{1+\alpha}$ for all $\alpha < 1$.
- are minimal (Kodama-Matsumoto); remains unknown in class $C^{1+\alpha}$.
An Equidistribution Theorem

Theorem

If $f \in C^{1+bv}$ and φ is of class C^1, then (for $\alpha \sim \frac{p_n}{q_n}$)

$$S_{q_n}(\varphi) - q_n \int_{S^1} \varphi d\mu \to 0.$$
An Equidistribution Theorem

Theorem

If $f \in C^{1+bv}$ and φ is of class C^1, then (for $\alpha \sim \frac{p_n}{q_n}$)

$$S_{q_n}(\varphi) - q_n \int_{S^1} \varphi d\mu \longrightarrow 0.$$

Recall:

$$\frac{S_n(\varphi)}{n} \longrightarrow \int_{S^1} \varphi d\mu, \quad \varphi \text{ continuous (Weyl-Birkhoff)}$$
An Equidistribution Theorem

Theorem

If $f \in C^{1+bv}$ and φ is of class C^1, then (for $\alpha \sim \frac{p_n}{q_n}$)

$$S_{q_n}(\varphi) - q_n \int_{S^1} \varphi d\mu \longrightarrow 0.$$

Recall:

$$\frac{S_n(\varphi)}{n} \longrightarrow \int_{S^1} \varphi d\mu, \quad \varphi \text{ continuous (Weyl-Birkhoff)}$$

$$\left| S_{q_n}(\varphi) - q_n \int_{S^1} \varphi d\mu \right| \leq \text{var}(\varphi), \quad \varphi \in C^{bv} \quad \text{(Denjoy-Koksma)}$$
Another consequence

Theorem
If f is a C^2 circle diffeomorphism with irrational rotation number, then f^{q_n} converges to the identity in the C^1 topology (M.Herman).
Another consequence

Theorem
If f is a C^2 circle diffeomorphism with irrational rotation number, then f^{qn} converges to the identity in the C^1 topology (M.Herman).

Proof. Apply the Equidistribution Theorem to $\varphi := \log(Df) \in C^1$. Since
$$\int_{S^1} \log(Df) d\mu = 0,$$
we get
$$\log(Df^{qn}) = S_{qn}(\log(Df)) \longrightarrow 0.$$
Since $f^{qn} \rightarrow id$ in the C^0 topology (Denjoy), we must have $f^{qn} \rightarrow id$ in the C^1 topology.
Proof of the Equidistribution Theorem

• First, w.l.g., we can (and will) assume that φ has zero mean with respect to the invariant measure.
Proof of the Equidistribution Theorem

• First, w.l.g., we can (and will) assume that \(\varphi \) has zero mean with respect to the invariant measure.
• Let \(\psi_m \) be such that \(\psi_m \circ f - \psi_m \rightarrow \varphi \) in the \(C^1 \) topology.

Then:

\[
S_{q_n}(\varphi) = S_{q_n}(\varphi - [\psi_m \circ f - \psi_m]) + S_{q_n}(\psi_m \circ f - \psi_m)
= S_{q_n}(\varphi - [\psi_m \circ f - \psi_m]) + \psi_m \circ f^{q_n} - \psi_m.
\]
Proof of the Equidistribution Theorem

• First, w.l.g., we can (and will) assume that φ has zero mean with respect to the invariant measure.
• Let ψ_m be such that $\psi_m \circ f - \psi_m \rightarrow \varphi$ in the C^1 topology. Then:

\[
S_{q_n}(\varphi) = S_{q_n}(\varphi - [\psi_m \circ f - \psi_m]) + S_{q_n}(\psi_m \circ f - \psi_m)
\]

\[
= S_{q_n}(\varphi - [\psi_m \circ f - \psi_m]) + \psi_m \circ f^{q_n} - \psi_m.
\]

Hence,

\[
|S_{q_n}(\varphi)| \leq |S_{q_n}(\varphi - [\psi_m \circ f - \psi_m])| + |\psi_m \circ f^{q_n} - \psi_m|
\]

\[
\leq \text{var}(\varphi - [\psi_m \circ f - \psi_m]) + |\psi_m \circ f^{q_n} - \psi_m|
\]

\[
\leq \|\varphi - [\psi_m \circ f - \psi_m]\|_{C^1} + |\psi_m \circ f^{q_n} - \psi_m|.
\]
An argument that doesn’t work:
An argument that doesn’t work: take

\[\psi_n := -\frac{1}{n} \sum_{i=0}^{n-1} S_i(\varphi). \]
Proof of the Main Theorem I

An argument that doesn’t work: take

$$\psi_n := -\frac{1}{n} \sum_{i=0}^{n-1} S_i(\varphi).$$

Then (remarkable identity)

$$\psi_n \circ f - \psi_n = \varphi - \frac{S_n(\varphi)}{n}$$

Hence, if φ has zero mean, then ψ_n yields the desired approximation of φ by coboundaries in the C^0 topology.
Proof of the Main Theorem II

But: for generic φ, the derivative of $\psi_n \circ f - \psi_n$ explodes.
Proof of the Main Theorem II

But: for generic \(\varphi \), the derivative of \(\psi_n \circ f - \psi_n \) explodes.

However, for \(\varphi(x) := f(x) - x \), this works, provided \(f \in C^{1+bv} \).
Proof of the Main Theorem II

But: for generic φ, the derivative of $\psi_n \circ f - \psi_n$ explodes.

However, for $\varphi(x) := f(x) - x$, this works, provided $f \in C^{1+\text{bv}}$. Indeed, the previous identity becomes

$$\psi_n \circ f - \psi_n = \varphi - \frac{f^n(x) - x}{n}$$

and the derivative of the term $\frac{f^{q_m}(x) - x}{q_m}$ converges to zero as $m \to \infty$, because of Denjoy’s inequality.
Proof of the Main Theorem III

A very simple idea: if we wish to C^1-approximate φ by functions of the form $\psi \circ f - \psi$, then $D\varphi$ should be C^0-approximable by functions of the form $\xi \circ f \cdot Df - \xi$. (Namely, for $\xi = D\psi$.)
Proof of the Main Theorem III

A very simple idea: if we wish to C^1-approximate φ by functions of the form $\psi \circ f - \psi$, then $D\varphi$ should be C^0-approximable by functions of the form $\xi \circ f \cdot Df - \xi$. (Namely, for $\xi = D\psi$.)

- **Key Fact:** This C^0-approximation follows from the fact that $\int D\varphi = 0$ using the work of R. Douady, J.-C. Yoccoz / A. Katok.
Proof of the Main Theorem III

A very simple idea: if we wish to C^1-approximate φ by functions of the form $\psi \circ f - \psi$, then $D\varphi$ should be C^0-approximable by functions of the form $\xi \circ f \cdot Df - \xi$. (Namely, for $\xi = D\psi$.)

- **Key Fact:** This C^0-approximation follows from the fact that $\int D\varphi = 0$ using the work of R. Douady, J.-C. Yoccoz / A. Katok.

- If the functions ξ had zero mean (Leb), this would solve the problem (just by integration).
Proof of the Main Theorem III

A very simple idea: if we wish to C^1-approximate φ by functions of the form $\psi \circ f - \psi$, then $D\varphi$ should be C^0-approximable by functions of the form $\xi \circ f \cdot Df - \xi$. (Namely, for $\xi = D\psi$.)

- **Key Fact:** This C^0-approximation follows from the fact that $\int D\varphi = 0$ using the work of R. Douady, J.-C. Yoccoz / A. Katok.

- If the functions ξ had zero mean (Leb), this would solve the problem (just by integration).

- Otherwise, just subtract the integral of ξ...
Proof of the Main Theorem IV

End of the proof: let \(c_n := \int \xi_n \) for \(\xi_n \) such that

\[
\xi_n \circ f \cdot Df - \xi_n \longrightarrow D\varphi.
\]
End of the proof: let \(c_n := \int \xi_n \) for \(\xi_n \) such that
\[
\xi_n \circ f \cdot Df - \xi_n \to D\varphi.
\]

Then
\[
(\xi_n - c_n) \circ f \cdot Df - (\xi_n - c_n) + c_n(Df - 1) \to D\varphi.
\]
Proof of the Main Theorem IV

End of the proof: let \(c_n := \int \xi_n \) for \(\xi_n \) such that

\[
\xi_n \circ f \cdot Df - \xi_n \longrightarrow D\varphi.
\]

Then

\[
(\xi_n - c_n) \circ f \cdot Df - (\xi_n - c_n) + c_n(Df - 1) \longrightarrow D\varphi.
\]

Now recall: \(\psi_{qm} \circ f - \psi_{qm} \longrightarrow f(x) - x \) in \(C^1 \), hence

\[
D\psi_{qm} \circ f \cdot Df - D\psi_{qm} \longrightarrow D(f(x) - x) = Df(x) - 1
\]
Proof of the Main Theorem IV

End of the proof: let $c_n := \int \xi_n$ for ξ_n such that

$$\xi_n \circ f \cdot Df - \xi_n \to D\varphi.$$

Then

$$(\xi_n - c_n) \circ f \cdot Df - (\xi_n - c_n) + c_n(Df - 1) \to D\varphi.$$

Now recall: $\psi_{q_m} \circ f - \psi_{q_m} \to f(x) - x$ in C^1, hence

$$D\psi_{q_m} \circ f \cdot Df - D\psi_{q_m} \to D(f(x) - x) = Df(x) - 1.$$

Thus,

$$(\xi_n - c_n + c_nD\psi_{q_m}) \circ f \cdot Df - (\xi_n - c_n + c_nD\psi_{q_m}) \to D\varphi.$$
Proof of the Key Fact

Theorem

If $\int \Phi = 0$, then Φ can be C^0 approximated by functions of the form $\xi \circ f \cdot Df - \xi$.

This result is the dual statement of the fact that there are no f-conformal measures other than the Lebesgue measure (which is a result due to Douady, Yoccoz/Katok).
Proof of the Key Fact

Theorem
If \(\int \Phi = 0 \), then \(\Phi \) can be \(C^0 \) approximated by functions of the form \(\xi \circ f \cdot Df - \xi \).

This result is the dual statement of the fact that there are no \(f \)-conformal measures other than the Lebesgue measure (which is a result due to Douady, Yoccoz/Katok).
Proof of the Key Fact

Theorem

If $\int \Phi = 0$, then Φ can be C^0 approximated by functions of the form $\xi \circ f \cdot Df - \xi$.

This result is the dual statement of the fact that there are no f-conformal measures other than the Lebesgue measure (which is a result due to Douady, Yoccoz/Katok).

Definition

A measure ν is f-conformal if for every continuous function Ψ:

$$\int \Psi \circ f \cdot Df \, d\nu = \int \Psi \, d\nu.$$
Group actions

For (finitely-generated) group actions by circle diffeomorphisms without invariant measure, there should be no invariant distribution. This is well established in some cases (real-analytic, free groups), and follows (among others) from recent works with Deroin and Kleptsyn, as well as the work of Filimonov and Kleptsyn:
Group actions

For (finitely-generated) group actions by circle diffeomorphisms without invariant measure, there should be no invariant distribution. This is well established in some cases (real-analytic, free groups), and follows (among others) from recent works with Deroin and Kleptsyn, as well as the work of Filimonov and Kleptsyn:

- Minimal actions are ergodic with respect to the ergodic measure.
Group actions

For (finitely-generated) group actions by circle diffeomorphisms without invariant measure, there should be no invariant distribution. This is well established in some cases (real-analytic, free groups), and follows (among others) from recent works with Deroin and Kleptsyn, as well as the work of Filimonov and Kleptsyn:

- Minimal actions are ergodic with respect to the ergodic measure. (Exceptional minimal sets have zero Lebesgue measure.)
For (finitely-generated) group actions by circle diffeomorphisms without invariant measure, there should be no invariant distribution. This is well established in some cases (real-analytic, free groups), and follows (among others) from recent works with Deroin and Kleptsyn, as well as the work of Filimonov and Kleptsyn:

- Minimal actions are ergodic with respect to the ergodic measure. (Exceptional minimal sets have zero Lebesgue measure.)
- There are no conformal measure other than Leb...
Conjugacies

The twisted cohomological equation is closely related to the next Question

Let f be a C^2 (even C^∞) circle diffeomorphism of irrational rotation number. Can f be C^2-conjugated to diffeomorphisms arbitrarily C^2-close to the corresponding rotation?

In class C^1, this is known and easy: just use the Cohomological Identity for $\log(Df)$.
Conjugacies

The twisted cohomological equation is closely related to the next

Question
Let f be a C^2 (even C^∞) circle diffeomorphism of irrational rotation number. Can f be C^2-conjugated to diffeomorphisms arbitrarily C^2-close to the corresponding rotation?

In class C^1, this is known and easy: just use the Cohomological Identity for $\log(Df)$. Less trivial is that such a method works for nilpotent groups:

Theorem
Every C^1 action of a nilpotent group on S^1 (resp. $[0,1]$) is topologically conjugated to actions arbitrarily C^1-close to actions by rotations (resp. the trivial action).
MANY THANKS